Session-Level Security

PGP, ssh, S'WAN, satan & crack: Securing the internet
by any means necessary

— Don Kitchen

Session-level Security Overview

Most session security protocols use some variation of

1. Decide on security parameters

2. Establish shared secret to protect further
communications

3. Authenticate the previous exchange

|PSEC

IP security — security built into the IP layer

Provides host-to-host (or firewall-to-firewall) encryption
and authentication

Required for IPv6, optional for IPv4

Comprised of two parts:
» IPSEC proper (authentication and encryption)
* IPSEC key management

Domain of interpretation (DOI) nails down the precise
details for an application of IPSEC

|PSEC Architecture

Key management establishes a security association (SA)
for asession
» SA used to provide authentication/confidentiality for that
session

» SA s referenced via a security parameter index (SPI) in eac
IP datagram header

[IP] SPI]| Data |IP Datagram

e —

Security information
maintained by host

AH

Authentication header — integrity protection only
Inserted into IP datagram:

IPv4 [P[Data |

v

IPv4 +
IPSEC [IP] AH | Data |

Integrity check value (ICV) is 96-bit HMAC

AH (ctd)

Authenticates entire datagram:

AH | Data |

Mutable fields (time-to-live, IP checksums) are zeroed
before AH is added

Sequence numbers provide replay protection

» Receiver tracks packets within a 64-entry sliding window

ESP

Encapsulating security protocol — authentication
(optional) and confidentiality

Inserted into IP datagram:

IPv4 |IP] Data |

v

IPv4 +
IPSEC [IP|ESP] Data |Auth]

Contains sequence numbers and optional ICV as for AH

ESP (ctd)

Secures data payload in datagram:

IP | ESP | Encr | Data | | Auth

Encryption protects payload

» Authentication protects header and encryption
SA bundling is possible

» ESP without authentication inside AH

» Authentication covers more fields this way than just ESP wit
authentication

|PSEC Algorithms

DESin CBC mode for encryption

HMAC/MD5 and HMAC/SHA (truncated to 96 bits) for
authentication

Later versions added optional, DOI-dependent algorithms

 3DES

» Blowfish
CAST-128
IDEA

« RC5

Triple IDEA (1)

Processing

Use SPI to look up security association (SA)
Perform authentication check using SA
Perform decryption of authenticated data using SA

Operates in two modes

» Transport mode (secure IP), protects payload

» Tunneling mode (secure IP inside standard IP), protects ent
packet

— Popular in routers

— Communicating hosts don’t have to implement IPSEC
themselves

— Nested tunneling possible

=

e

| PSEC Key Management
ISAKMP

* Internet Security Association and Key Management Protocol
Oakley

» DH-based key management protocol
Photuris

» DH-based key management protocol
SKIP

» Sun’s DH-based key management protocol

Protocols changed considerably over time, most borrowed
ideas from each other

Photuris

Latin for “firefly”, Firefly is the NSA’s key exchange
protocol for STU-IIl secure phones

Three-stage protocol

1. Exchange cookies

2. Use DH to establish a shared secret
Agree on security parameters

3. Identify other party
Authenticate data exchanged in steps 1 and 2

n. Change session keys or update security parameters

Photuris (ctd)
Cookie based on |P address and port, stops flooding attacks

 Attacker requests many key exchanges and bogs down hos
(clogging attack)

Cookie depends on

 |P address and port
» Secret known only to host
» Cookie = hash(source and dest IP and port + local secret)

Host can recognise a returned cookie
» Attacker can’t generate fake cookies
L ater adopted by other IPSEC key management protocols

Photuris (ctd)

SKIP

Each machine has a public DH value authenticated via

* X.509 certificates
* PGP certificates
e Secure DNS

Public DH value is used as an implicit shared key
calculation parameter

» Shared key is used once to exchange encrypted session ke

» Session key is used for further encryption/authentication
Clean-room non-US version developed by Sun partner in

M oscow

» US government forced Sun to halt further work with non-US
version

Oakley
Exchange messages containing any of

» Client/server cookies

* DH information

» Offered/chosen security parameters
* Client/server ID’s

until both sides are satisfied

Oakley is extremely open-ended, with many variations
possible

» Exact details of messages exchange depends on exchange
requirements
— Speed vs thoroughness
— ldentification vs anonymity
— New session establishment vs rekey
— DH exchange vs shared secrets vs PKC-based exchangy

U

ISAKMP

NSA-designed protocol to exchange security parameters
(but not establish keys)
» Protocol to establish, modify, and delete IPSEC security
associations

» Provides a general framework for exchanging cookies, secu
parameters, and key management and identification
information

» Exact details left to other protocols
Two phases

1. Establish secure, authenticated channel (“SA”)
2. Negotiate security parameters (“KMP”)

rity

|SAKMP/Oakley

ISAKMP merged with Oakley
* ISAKMP provides the protocol framework
» Oakley provides the security mechanisms

Combined version clarifies both protocols, resolves
ambiguities

ISAKMP/Oakley (ctd)

Phase 1 example

Other variants possible (data spread over more messages,
authentication via shared secrets)

» Above example is aggressive exchange which minimises thg
number of messages

v

ISAKMP/Oakley (ctd)

Phase 2 example

SSL

Secure sockets layer — TCP/IP socket encryption
Usually authenticates server using digital signature
Can authenticate client, but this is never used
Confidentiality protection via encryption

Integrity protection via MAC'’s

Provides end-to-end protection of communications sessions

History
SSLv1 designed by Netscape, broken by members of the
audience while it was being presented
SSLv2 shipped with Navigator 1.0
Microsoft proposed PCT: PCT != SSL

SSLv3 was peer-reviewed, proposed for IETF
standardisation

* Never finalised, still exists only as a draft

SSL Handshake

1. Negotiate the cipher suite

2. Establish a shared session key

3. Authenticate the server (optional)

4. Authenticate the client (optional)

5. Authenticate previously exhanged data

SSL Handshake (ctd)

SSL Handshake (ctd)
Client hello:

 Client nonce
» Available cipher suites (eg RSA + RC4/40 + MD5)

Server hello:

* Server nonce
» Selected cipher suite

Server adapts to client capabilities
Optional certificate exchange to authenticate server/client

* In practice only server authentication is used

SSL Handshake (ctd)
Client key exchange:

* RSA-encrypt(premaster secret)
Both sides:

» 48-byte master secret = hash(premaster + client-nonce +
server-nonce)

Client/server change cipher spec:

» Switch to selected cipher suite and key

SSL Handshake (ctd)
Client/server finished

* MAC of previously exchanged parameters (authenticates da
from Hello and other exchanges)

— Uses an early version of HMAC
Can reuse previous session data via session ID’s in Hello

Can bootstrap weak crypto from strong crypto:

» Server has > 512 bit certificate

* Generates 512-bit temporary key

» Signs temporary key with > 512 bit certificate
» Uses temporary key for security

Maintains separate send and receive states

SSL Data Transfer

| Data |

A 4
[Fragment| [Fragment| |Fragment]

A 4
= Compress

1
A
— MAC Optional

[,

A
[W | Encrypt

I

Transmit

SSL Characteristics
Protects the session only

Designed for multiple protocols (HTTP, SMTP, NNTP,
POP3, FTP) but only really used with HTTP

Compute-intensive:

e 3 CPU seconds on Sparc 10 with 1Kbit RSA key

200 MHz NT box allows about a dozen concurrent SSL
handshakes

— Use multiple servers
— Use hardware SSL accelerators

Crippled crypto predominates

» Strong servers freely available (Apache), but most browsers
US-sourced and crippled

Strong SSL Encryption

Most implementations based on SSLeay,
http://ww. ssl eay. or g/

Server

* Some variation of Apache + SSLeay
Browser

» Hacked US browser
* Non-US browser

SSL Proxy

» Strong encryption tunnel using SSL

Strong SSL Browsers

Fortify, ht tp: // www. fortify. net/

Patches Netscape (any version) to do strong encryption

Original:
POLI CY- BEG NS- HERE:
Sof t war e- Ver si on
MAX- GEN- KEY- BI TS
PKCS12- DES- EDE3:
PKCS12- RC2- 128:
PKCS12- RC4- 128:
PKCS12- DES- 56:
PKCS12- RC2- 40:
PKCS12- RC4- 40:

SSL3- RSA- W TH RCA- 128- MD5:

SSL3- RSA- W TH- 3DES- EDE- CBC- SHA:

Export policy
Mozillal 4.0
512

fal se

fal se

fal se

fal se

true

true

condi ti ona
condi ti ona

Strong SSL Browsers (ctd)

Patched version

POLI CY- BEG NS- HERE:
Sof t war e- Ver si on
MAX- GEN- KEY- BI TS:
PKCS12- DES- EDES:
PKCS12- RC2- 128:
PKCS12- RC4- 128:
PKCS12- DES- 56:
PKCS12- RC2- 40:
PKCS12- RC4- 40:

SSL3- RSA- W TH RCA- 128- MD5:

SSL3- RSA- W TH- 3DES- EDE- CBC- SHA

Cypher punk policy
Mozillal 4.0

1024

true

true

true

true

true

true

true
true

Strong SSL Browsers (ctd)

Opera, ht t p: / / www. oper asof t war e. conl

* Norwegian browser, uses SSLeay
Cryptozilla, ht t p: / / www. crypt ozi | | a. or g/
» Based on open-source Netscape
» Strong crypto added within one day of release from the US

Exported US-only versions,
ftp://ftp.replay.com pub/replay/ pub/

» Contains copies of most non-exportable software

Strong SSL Servers

Based on SSL eay + some variant of Apache
Mostly Unix-only, some NT portsin progress
SSL portion is somewhat painful to configure
Howtos available on the net

Strong SSL Proxies

Tunnel weak or no SSL over strong SSL

Weak encryption
Browser
Browser
SSL Proxy Strong encryption
Server Gated Cryptography

Allows strong encryption on a per-server basis

Originally available only to “qualified financial

institutions”, later extended slightly (hospitals, some

government departents)

Requires special SGC server certificate from Verisign
Enables strong encryption for one server (www.bank.co

n)

SGC (ctd)
Exportable SSL

SSL with SGC

TLS

Transport layer security
|ETF-standardised evolution of SSLv3

» Non-patented technology
* Non-crippled crypto
» Updated for newer algorithms

Substantially similar to SSL
* TLS identifies itself as SSL 3.1
Not finalised yet, little implementation support

TLS standards work,
http://ww. consensus.comietf-tls/

SHTTP

Designed by Terisain response to CommerceNet RFP,
http://ww. terisa.com shttp/intro. htm

Predates SSL. and SMIME
Security extension for HTTP (and only HTTP)
Document-based:

» (Pre-)signed documents
* Encrypted documents

Large range of algorithms and formats supported
Not supported by browsers (or much else)

SSH

Originally developed in 1995 as a secure replacement for
rsh, rlogin, et a (ssh = secure shell),
http://ww.cs. hut.fi/ssh/

Also alows port forwarding (tunneling over SSH)
Built-in support for proxies/firewalls

Includes Zip-style compression

Originally implemented in Finland, available worldwide
SSH v2 submitted to |ETF for standardisation

Can be up and running in minutes

SSH Protocol

Server uses two keys:
» Long-term server identification key
» Short-term encryption key, changed every hour

Long-term server key binds the connection to the server
Short-term encryption key makes later recovery impossible

» Short-term keys regenerated as a background task

SSH Authentication

Multiple authentication mechanisms

 Straight passwords (protected by SSH encryption)

* RSA-based authentication (client decrypts challenge from
server, returns hash to server)

* Plug-in authentication mechanisms, eg SecurlD

Developed outside US, crippled crypto not even
considered:

» 1024 bit RSA long-term key

» 768 bit RSA short-term key (has to fit inside long-term key fq
double encryption)

» Triple DES session encryption (other ciphers available)

DNSSEC

DNS name space is divided into zones, each zone has
resource records (RR’s)
Owner _nanme Type Cass TTL Rdl ength Rdata
* Owner = name of node
* Type = RR type
— A = Host address
— NS = authoritative name server
— CNAME = canonical name for alias
— SOA = start of zone authority
— PTR = domain name pointer
— MX = mail exchange
» Class = IN (Internet)
e TTL = time for which RR may be cached

DNSSEC (ctd)

Name servers hold zone information

» Each zone has primary and secondary servers

» Secondaries perform zone transfers to obtain new data from
primaries

Resolvers extract information from name servers

e Cached entry is returned directly
* Interative query returns referral to the appropriate server
* Recursive query queries other server and returns result

All of these points present security vulnerabilities

DNSSEC (ctd)

DNSSEC splits the service into name server and zone
manager
e Zone manager signs zone data
* Name server publishes signed data
— Compromise of name server doesn’t compromise DNSS

Resolvers need to store at |east one top-level zone key

DNSSEC (ctd)

RR’s are extended with new types

» KEY, server public key
» SIG, signature on RR
e NXT, chains from one name in a zone to the next
— Allows authenticated denial of the existence of a name

* These RR’s have signature start and end times, require
coordinated clocks on hosts

C

DNSSEC (ctd)

Transaction signature guarantees the response came from a
given server

 Signature covers query and response
Also used for

» Secure zone transfer
» Secure dynamic update (replaces editing the zone’s master
 Offline update

— Uses authorising dynamic update key for update

— Zone data is signed later with the zone key

file)

SNMP Security

General SNMP security model: Block it at the router
Authentication: hash(secret value + data)
Confidentiality: encrypt(data + hash)

Many devices are too limited to handle the security
themselves

» Handled for them by an element manager
» Device talks to element manager via a single shared key
Users generally use a centralised enterprise manager to talk
to element managers

» Enterprise manager is to users what element manager is to
devices

Email Security

“Why do we have to hide from the police, Daddy?”
“Because we use PGP, son. They use S/IMIME”

Email Security

Problems with using email for secure communications
include

» Doesn’t handle binary data
* Messages may be modified by the mail transport mechanisr
— Trailing spaces deleted
— Tabs~ spaces
— Character set conversion
— Lines wrapper/truncated
» Message headers mutate considerably in transit

Data formats have to be carefully designed to avoid
problems

Email Security Requirements

Main requirements

» Confidentiality
» Authentication
* Integrity
Other requirements
* Non-repudiation
» Proof of submission
» Proof of delivery
* Anonymity
» Revocability
» Resistance to traffic analysis

Many of these are difficult or impossible to achieve

Security Mechanisms

Detached signature:
Message | | Sig

» Leaves original message untouched
 Signature can be transmitted/stored seperately
* Message can still be used without the security software

Signed message
Sig

 Signature is always included with the data

Security Mechanisms (ctd)
Encrypted message
Encr

Usually implemented using public-key encryption
PKeencr | Encr

Mailing lists use one public-key encrypted header per
recipient

PK-encr | PK-encr | PK-encr
key key key Encr

» Any of the corresponding private keys can decrypt the sessi
key and therefore the message

Security Mechanisms (ctd)

Countersigned data

Sig, | Sig,

Encrypted and signed data

Encr Sig

« Always sign first, then encrypt
S(E(“Pay the signer $1000"))
VS
E(S(“Pay the signer $1000"))

PEM

Privacy Enhanced Mail, 1987

Attempt to add security to SMTP (MIME didn’t exist yet)
» Without MIME to help, this wasn’t easy
Attempt to build a CA hierarchy along X.500 lines

» Without X.500 available, this wasn't easy
Solved the data formatting problem with base64 encoding

» Encode 3 binary bytes as 4 ASCII characters
* The same encoding was later used in PGP 2.x, MIME, ...

PEM Protection Types

Unsecured data
Integrity-protected (MIC-CLEAR)

* MIC = message integrity check = digital signature
Integrity-protected encoded (MIC-ONLY)
Encrypted integrity-protected (ENCRY PTED)

Genera format:
----- BEGA N PRI VACY- ENHANCED MESSAGE- - - - -

Type: Val ue Encapsulated header
Type: Val ue
Type: Val ue
Blank line
Dat a Encapsulated content

----- END PRI VACY- ENHANCED MESSAGE- - - - -

PEM Protection Types (ctd)
MIC-ONLY

----- BEG N PRI VACY- ENHANCED MESSACE- - - - -

Proc- Type: 4, M C ONLY

Cont ent - Domai n: RFC822

Oiginator-Certificate:
M | Bl TCCASc CAWMDQYJKoZI hvc NAQECBQAWUTEL MAk GA1 UEBhMCVVIMK I DAeBgNV
BAOTF1JTQSDRi NKcOCaColL Ay aXR5LCBJ bmivuMBwWDQYDVQQL EwZCFNOr DDEX Dz AN

i W FPUN5j J79Khf g7ASFxsk YKEM RNZV/ HZDZQEht VaU7Jxf zs2wf X5by Mp2X3U/
5XUXCx 7qus DgHQGs 7JkOVWBCWLf uSWUgNAw==

| ssuer-Certificate:
M | B3FNoRDg CAQowDQYJKoZI hvc NAQECBQAWTzEW GEbLUMenKr aFTMkI DAeBgNV
BAOTF1ITQSBEYXRhI FNI Y3VyaXR5LCBJ bnmivu MBWDQYDVQQLEwZCZXRh| DEXDTAL

dD2j Mz/ 3HsyWKWYSFOeH AJB3qr 9zosA7py MhTf 3aSy 2nBO7 Cvk p UWRBe XUp E+x

EREZd9++320f GBI Xai al nOgVUn0Qz SYgugi QReS| sTKEYeSCr OW zEs5wWUJ35a5h
M C- I nfo: RSA- MD5, RSA,

j V2OF HtnnXFNor DL8k PAad/ nSQ TDZI bVuxvZAOVRZ5q5+Ej | 5bQrqNeqOUNG r 6

Et E7TK2QDeVMCy XsdJ| A8f A==

LSBBI GlI c3NhZ2UgZmdy| HVzZSBpbi BOZXNOaWbnLgOKLSBGh2xsb3dpbntgaXvy
YSBi bGFuayBsaWsl OgOKDQpUad z| d zI HRoZSBI bnuDQo=
----- END PRI VACY- ENHANCED MESSAGE- - - - -

PEM Protection Types (ctd)
ENCRYPTED

----- BEG N PRI VACY- ENHANCED MESSAGE- - - - -
Proc- Type: 4, ENCRYPTED
Cont ent - Donmai n: RFC822
DEK- | nf o: DES- CBC, BFF968AA74691AC1
Oiginator-Certificate:
M | Bl TCCASc CAWUWDQYJKoZI hvc NAQECBQAWUTEL MAk GA1 UEBhMCVVIMK I DAeBgNV

5XUXGx 7qus DgHQGs 7JkOVWBCWLf uSWUgNAw==
I ssuer-Certificate:
M | B3DCCAUg CAQoWDQYJKoZI hvc NAQECBQAWT z EL MAk GA1UEBhMCVVIMK | DAe BgNV

EREZd9++320f GBI Xai al nOgVUn0Cz SYgugi Q077nJLDUj 0hQehC zEs5wUl35a5h
M C- I nfo: RSA- MD5, RSA,

UdFJR8u/ Tl Ghf H65i eewe2l OMt 00a3vZCvVNGBZI r f / 7nr gz\WDABz 8wONs XSexv

Al RFbHoNPz BuxwnDAFe AOHIszL4yBvhG

Continues

PEM Protection Types (ctd)

Continued

Reci pi ent-1D Asymmetri c:
MFEx Cz AJBgNVBAYTAl VTMSAWHG YDVQQKEX d SUOEgRGFOYSBTZWN1c i Oe SwgSViB)
Lj EPMAOGA1UECX MEQMVOYSAX MOBWDQYDVQQLEWZOT1RBU k=, 66

Key- 1 nfo: RSA
O6BS1wWwWICTyHPt S3bM_D+L0Ohej dvX6Qv1HK2ds2s QPEaXhX8EhvVphHYTj wekdW
7x0Z3Jx2vTAhOYHMVEqqC A==

geW j / YJ2Uf 5ng9yznPbt DOmyYl oSwi uVOFRYx+gz Y+8i Xd/ NQr XHf i 6/ MhPf PF3d
j 1 qCIAxvI d2xggQ nmzoSladr 7kQbc/ | uadLgKeq3ci FzEv/ MoZhA==
----- END PRI VACY- ENHANCED MESSAGE- - - - -

PEM CA Hierarchy

l—| Internet Policy
IPRA Registration Authority

Policy Certification
[PCA|] | PCA | [PCA | Authority

[CA| [CA]| [CA]

End entities

Hierarchy alows only a single path from the root to the end
entity (no cross-certificates)

Although PEM itself failed, the PEM CA terminology still
Crops up in various products

PEM CA Hierarchy (ctd)

Policy CA’s guarantee certain things such as uniqueness

names
» High-assurance policies (secure hardware, drug tests for us
etc)

— Can't issue certificates to anything other than other high-
assurance CA’s

» Standard CA’s

* No-assurance CA’s (persona CA’S)
— Certificate vending machines
— Clown suit certificates

Why PEM Failed
Why the CA'’s failed

* The Internet uses email addresses, not X.500 names
— Actually, noone uses X.500 names

» CA's for commercial organisations and universities can’t megt

the same requirements as government defence contractors for

high-assurance CA’s

— Later versions of PEM added lower-assurance CA
hierarchies to fix this

» CA hardware was always just a few months away
—When it arrived, it was hideously expensive

» CA'’s job was made so onerous noone wanted it
— Later versions made it easier

Why PEM Failed (ctd)

» Hierarchy enshrined the RSADSI monopoly

— CA hardware acted as a billing mechanism for RSA
signatures

— People were reluctant to trust RSADSI (or any one party
with the security of the entire system

Why the message format failed

* The PEM format was ugly and intrusive

— PEM'’s successors bundled everything into a single blob
tried to hide it somewhere out of the way

» The reqgired X.500 support infrastructure never materialised
* RSA patent problems

Pieces of PEM live onin afew European initiatives
* MailTrusT, SecuDE, modified for MIME-like content types

hnd

PGP

Pretty Good Privacy
» Hastily released in June 1991 by Phil Zimmerman (PRZ) in
response to S.266
* MD4 + RSA signatures and key exchange
» Bass-O-Matic encryption
» LZH data compression
» uuencoding ASCIl armour
» Data format based on a 1986 paper by PRZ

PGP was immediately distributed worldwide via a Usenet
post

PGP (ctd)

PGP 1.0 lead to an international effort to develope 2.0
» Bass-O-Matic was weak, replaced by the recently-develope
IDEA
e MD4 " " " " MD5
* LZH replaced by the newly-developed InfoZip (now zlib)
» uuencoding replaced with the then-new base64 encoding
» Ports for Unix, Amiga, Atari, VMS added
* Internationalisation support added

} =

Legal Problems

PGP has been the centre of an ongoing legal dispute with
RSADSI over patents

* RSADSI released the free RSAREF implementation for (nor
commercial) PEM use

« PGP 2.6 was altered to use RSAREF in the US

» Commercial versions were sold by Viacrypt, who have an R5

license
L ater versions deprecated RSA in favour of the non-
patented Elgamal

» Elgamal referred to in documentation as Diffie-Hellman for n
known reason

(0]

Government Problems

In early 1993, someone apparently told US Customs that
PRZ was exporting misappropriated crypto code

US Customs investigation escalated into a Federal Grand
Jury (US Attorney) in September 1993

US government was pretty serious, eg:

26 February 1995: San Francisco Examiner and SF Chronicle
publish an article criticising the governments stand on
encryption and the PGP investigation

27 February 1995: Author of article subpoena’d to appear before
the Grand Jury

Investigation dropped in January 1996 with no charges laid

PGP Message Formats

Unsecured
Compressed
Signed/clearsigned
Encrypted

+ optional encoding
Genera format

————— BEG N PGP messagetype- - - - -

————— END PGP messagetype- - - - -

PGP Message Formats (ctd)
Clearsigned message:

W' ve got into Peters presentation. Yours is next. Resistance is
usel ess.

----- BEG N PGP S| GNATURE- - - - -
Version: 2.3

i QCVAgUBKII Al 2v14aSAKIPNAQEVXgQA0Xr vi AggvpVRDLW CHbNQo6y HuNuj 8y
cvPx2zVkhH zkf s51 UN6z63r Rwej vHxegV79EX4xzsssWUzbLvy QUkGS08SZ2Eq
bLSui j 9aFXal v5gJ4j B/ hU40qvUBl 7gKKr Vgt LxEYpkvXFd+t FC4n9Hovunmv NRUc
ve57Y8988pY=

=NCcG

----- END PGP S| GNATURE- - - - -

PGP Message Formats (ctd)
Anything else

----- BEA N PGP MESSAGE- - - - -
Version: 2.3a

hQEMAI khsM216BgRAQ / f 938A6hgl X51/ hwa420Cdr QDRGMHId+50qQX/ 58JB8Y
UAI r YBHYZ5nmd46et y62phvbwf sNuF9i gSx2943CHr nul Vt kSXZRpKogt SE1oM ab
5i vD4l +h3Xk0Jpkn5SXYAz C6/ cj AZAZSJj oqy28LBI wzl f NNgr zI uEVBI bLPWAt 1
eqdS18uki OWnQAl 1¢X Ji pGUGH+Db1KnpqJP7wWHU / 4RGLQ 50p3BCDI spC8j zQ' y
GsKFI ckA132dMk6b80vsUzZga/ t mIOm gBj SbnQJ8UzLr Ne+§ FRyBS+qGuKgLdIM
ynYgMyNOgo/ LXALSI LI cz3i nDSC5NJj 04RbRZOOWAKYAAFTr xX9a1BQq1lnb40/ OSB
Cgr Pgi 61j Bks2NW2EPol C7nV5xLj f1 Zwl Rj Y/ V5sZS6XDycJ9YOF 6f Ocl N\wCoBsB
HRshniNt MHH2t g2/ / Qoz KZ8/ GHGNy s NBQQWNQYEI gRCgH30ul1E+CJoyoPwr Myj SYC
0G4f ezQoi | 83Ve/ QUW276Knt TFLRpQH+ LDvXOW j gl+xTw==

=ZuCoF

----- END PGP MESSAGE--- - -

PGP Key Formats

Unlike PEM, PGP also defined public/private key formats

KeylD
Public key | Key trust

UserlD UserlID trust
Signature Sig.trust
Signature Sig.trust

» Key trust = how much the key is trusted to sign things (set by

user)
» userID trust = how much the userID is trusted to belong to tf
key
 Signing trust = copy of the signing keys trust

PGP calculates userI D trust = sum of signing trusts

PGP Trust

UserID trust = trust of binding between userlD and key
Key trust = trust of key owner
Example: UserID = Politician
» UserlD trust = High
* Key trust = Low
Trust levels

e Unknown
* None

e Casual

» Heavy-duty

S

PGP Trust (ctd)

Trust levels are automatically computed by PGP
| Publickey | UserlD | Trust=High |

Signature |Trust=Casual
Signature |Trust=Casual
Signature | Trust=None

Signature |Trust=Casual

User can define the required trust levels (eg 3 casuals =1
high)

PGP Trust (ctd)

In practice, the web of trust doesn’t really deliver

* |t can also be used hierarchically, like X.509
Each key can contain multiple userlD’s with their own trust
levels
 userID = Peter Gutmann, trust = high
 userID = University Vice-Chancellor, trust = none

Keys are revoked with a signed revocation which PGP adds
to the key

PGP Keyrings
One or more keys stored together constitute akeyring
Keys are looked up by

* userID (free-form name)
* keylD (64-bit value derived from the public key)

Key | Trust 4J__

— Key | Trust [« ’7 < —
Sig | Trust &9
Sig | Trust [

Sig | Trust |+ ——1 _Key | Trust J

L Key | Trust L

The owners key is ultimately trusted and can convey thisto
other keys

Key Distribution

Key distribution doesn’t rely on an existing infrastructure

* Email
» Personal contact

— Keysigning services
» Mailed floppies

Verification by various out-of-band means (personal
contact, phone, mail)

* PGP key fingerprint designed for this purpose
First-generation keyservers

» email/HTTP interface to PGP keyring
Second-generation keyservers

* LDAP kludged to handle PGP ID’s

PGP Key Problems
KeylD is 64 least significant bits of public key

» Can construct keys with arbitrary ID’s
 Allows signature spoofing

Key fingerprints can aso be spoofed

Advantages of PGP over PEM

Y ou can pick your own name(s)

You don't have to register with an authority

PGP requires no support infrastructure

The trust mechanism more closely matches real life

Certificate distribution can be manual or automatic (just
include it with the message)

PGP is uniqgue among email security protocols in having|no
crippled encryption

PGP’s compression speeds up encryption and signing,
reduces message overhead

MIM E-based Security

Multipurpose Internet Mail Extensions

Provides a convenient mechanism for transferring
composite data

Security-related information sent as sections of a multipart
message
» multipart/signed
* multipart/encrypted

Binary data handled via base64 encoding

MIME-aware mailers can automatically process the
security informtion (or at least hide it from the user)

MIM E-based Security (ctd)

General format:

Cont ent - Type: multi part/type; boundary="Boundary"
Cont ent - Tr ansf er - Encodi ng: base64

- - Boundary
encryption info

- - Boundary
message

- - Boundary

signature
- - Boundary- -

Both PEM and PGP were adapted to fit into the MIME
framework

MOSS

MIME Object Security Services

 PEM shoehorned into MIME

* MOSS support added to MIME types via application/moss-
signature and application/moss-keys

MOSS (ctd)
MOSS Signed

Content - Type: multipart/signed; protocol ="application/npss-
signature"; mcal g="rsa-nmd5"; boundary="Si gned Message"

--Si gned Message
Content - Type: text/plain

Support PGP: Show MOSS to your friends.

--Signed Message
Content - Type: application/ noss-signature

Version: 5
Oiginator-1D
j V2O H-nnXHU8BbnL8kPAad/ nSQ TDZI bVuxvZAOVRZ5q5+Ej | 5bQvgNeqOUNG r 6
Et ETK2QDeVMCy XsdJ| A8f A==
M C- I nfo: RSA- MD5, RSA,
UdFJR8u/ Tl Ghf H65i eewe2l OMt 00a3vZCvVNGBZI r f / 7nr gz\WDABz 8wONs XSexv
Al RFbHoNPz BuxwnDAFe AOHIszL4yBvhG

--Signed Message- -

MOSS (ctd)
MOSS Encrypted

Content-Type: multipart/encrypted; protocol ="application/noss-keys";
boundar y="Encrypt ed Message"

--Encrypted Message
Cont ent - Type: applicati on/ noss- keys

Version: 5

DEK- | nf o: DES- CBC, BFF968AA74691AC1

Reci pient-1D:
MFEx Cz AJBgNVBAYTAl VTMSAWHG YDVQQKEX d SUOEgRGFOYSBTZWN1c i Oe Swg SViB)
Lj EPMAOGA1UECX MEQMVOYSAX MBWDQYDVQQLEWZOT1RBU k=, 66

Key- 1 nfo: RSA
O6BS1wWwWICTyHPt S3bM_D+L0Ohej dvX6Qv1HK2ds2s QPEaXhX8EhvVphHYTj wekdW
7x0Z3Jx2vTAhOYHVEqqC A==

--Encrypted Message
Content - Type: application/octet-stream

qeW |/ YJ2Uf 5ng9yznPbt DOmYl oSW uVOFRYx+gzY+8i Xd/ NQr XHf i 6/ MhPf PF3d
j 1 qCIAxvI d2xggQ nmzoSladr 7kQbc/ | uadLgKeq3ci FzEv/ MoZhA==

--Encrypted Message--

PGP/MIME

PGP shoehorned into MIME

* PGP support added to MIME types via application/pgp-
signature and application/pgp-encrypted

PGP already uses-’ so PGP/MIME escapes this with

PGP/MIME (ctd)
PGP/MIME Signed:

Content-Type: multipart/signed; protocol ="application/pgp-signature”;
m cal g=pgp- md5; boundary=Si gned

--Si gned
Content - Type: text/plain

Qur message format is uglier than your nessage fornat!

--Signed
Content - Type: application/ pgp-signature

- e BEGA N PGP MESSAGE- - - - -
Version: 2.6.2

i QCQVAWUBMIT RF2N90oWBghPDJ AQE9UQQAL | 7LURVNdBj r k4EqYBI b3h5QXI X/ LC/ /
j JV5bNvkZI GPI cEml 5i Fd9boEgvpi r Ht | REEqLQRKYNoBAct FBZmh9GC3C041Wxg
uMor bxc+nl s1TI KI A08r Vi 9i g/ 2Yh7LFr K5Ei n57U W 2vgSxLhe/ zhdf ol T9Br n
HOxEa44b+El =

=ndaj

EEEEE T END PGP MESSAGE--- - -

- - Si gned- -

PGP/MIME (ctd)
PGP/MIME Encrypted

Content-Type: multipart/encrypted; protocol ="application/pgp-
encrypted"; boundary=Encrypted

--Encrypted
Cont ent - Type: applicati on/ pgp-encrypted

Version: 1

--Encrypted
Content - Type: application/octet-stream

----- BEG N PGP MESSAGE--- - -
Version: 2.6.2

hl wDY32hYGCE8MBA/ wQu7d45aUx FAQORKI pr D3v5Z9K1YcRI2f ve871 M Dl x4Q
g9VAXFeGgzykzmyk Us A26 MSMex R4AApee ON6xzZW 0+0y OgqAq6! b46wsvl dZ96YA
AABH78hy X7YX4uT1t NCVEI | Bogqgv Cel Mop7UQI zBr Xg6G uk SBNxbuk LeangVW\B
1yt 21DYQ uLzcMNe/ JNs D9vDVCvOOG3CCI 8=

=zzaA

----- END PGP MESSAGE- - - - -

--Encrypted--

MOSS and PGP/MIME

MOSS never took off
PGP/ MIME never took off either

SMIME

Originally based on proprietary RSADSI standards and
MIME

» PKCS, Public Key Cryptography Standards
—RC2, RC4 for data encryption
— PKCS #1, RSA encryption, for key exchange
— PKCS #7, cryptographic message syntax, for message
formatting
Newer versions added non-proprietary and non-patented
ciphers

CMS

Cryptographic Message Syntax

* Type-and-value format

Content type
Content

Data content types

» Data

» Signed data

» Encrypted data (conventional encryption)
* Enveloped data (PKC-encrypted)
Digested (hashed) data

Authenticated (MAC’d) data

CMS (ctd)

Other content types possible

» Private keys
« Key management messages

Content can be arbitrarily nested

Content = Encrypted
Encryption info

Content = Signed

Content = Data
Data

Signature(s)

Signed Data Format

Presence of hash algorithm information before the data and
certificates before the signatures allows one-pass
processing

Signature Format

Authenticated attributes are signed along with the
encapsulated content
» Signing time
» Signature type
—“l agree completely”
—“l agree in principle”
—“I disagree but can’t be bothered going into the details”
—“A flunky handed me this to sign”

Signature Format (ctd)

* Receipt request
» Security label
» Mailing list information

Unauthenticated attributes provide a means of adding
further information without breaking the original
signature

» Countersignature
— Countersigns an existing signature

— Signs signature on content rather than content itself, so
other content doesn’t have to be present

— Countersignatures can contain further countersignatures

Enveloped Data Format

Newer versions add support for key agreement algorithms
and previoudly distributed shared conventional keys

CMS - SMIME

Wrap each individual CMS layer in MIME

base64 encode + wrap content
Encode as CMS data

base64 encode + wrap content
Encode as CM S signed data
base64 encode + wrap content
Encode as CM S enveloped data
base64 encode + wrap content

Result is 2:1 message expansion

S MIME Problems

Earlier versions used mostly crippled crypto

* Only way to interoperate was 40-bit RC2
— RC2/40 is still the lowest-common-denominator default

— User is given no warning of the use of crippled crypto
— Message forwarding may result in security downgrade

» S/MIME-cracking screen saver released in 1997,
http://ww. count er pane. conf sm ne. htm

— Performs optimised attack using RC2 key setup cycles
— Looks for MIME header in decrypted data

Original SSMIME based on patented RSA and proprietary
RC2, rgiected by |IETF as a standard

|[ETF developed SSMIME v3 using strong crypto and non-
patented, non-proprietary technology

MSP

M essage Security Protocol, used in Defence Messaging
System (DMYS)
» X.400 message contains envelope + content
* MSP encapsulates X.400 content and adds security header
| X.400 Envelope |

X.400/MSP Content
| MSP Header |

Encapsulated
content

X.400 security required using (and trusting) X.400 MTA;
M SP requires only trusted endpoints
* MSP later used with MIME

MSP Services
Services provided

* Authentication
* Integrity
» Confidentiality
* Non-repudiation of origin (via message signature)
* Non-repudiation of delivery (via signed receipts)
M SP also provides rule-based access control (RBAC)

based on message sensitivity and classification levels of
sender, receiver, and workstation

* Receiving MUA checks that the receiver and workstation arg
cleared for the messages security classification

\14

MSP Certificates
M SP defines three X.509 certificate types

 Signature-only
» Encryption (key management) only
 Signature and encryption (two keys in one certificate)

Certificate aso includes RBAC authorisations

MSP Protection Types

MSP Signature

 MUA/MLA signs with signature-only certificate
Non-repudiation

» User signs with signature or dual-key certificate
Confidentiality, integrity, RBAC

» Encrypted with key management or dual-key certificate
Non-repudiation + confidentiality, integrity, RBAC

 Sign + encrypt using either signature and key management
certificates or dual-key certificate

Any of the above can be combined with MSP signatures

M SP Protection Types (ctd)

M SP signature covers M SP header and encapsul ated
content
* Mandatory for mailing lists

User signature covers encapsulated content and recel pt
request information

M SP M essage Format

* RBAC is encrypted to protect it if no signatures are used

MSPin Practice

MSPis heavily tied into Fortezza hardware

» DSA signatures
* KEA key management
» Skipjack encryption

MSP later kludged to work with MIME ala MOSS and
PGP/MIME

